

Bilkent University

Department of Computer Engineering

CS 492 - Senior Design Project II
Project Name: PANDETECT

Low Level Design Report

Group Members: ​Selen Uysal, Berk Güler, İrem Seven, Ufuk Bombar, Batuhan

Tosyalı

Supervisor: ​Selim Aksoy
Innovation Expert:​ Ahmet Eren Başak

1

1. Introduction 3

1.1 Object Design Trade-offs 4
1.1.1 Usability vs Accuracy 4
1.1.2 Flexibility vs Usability 4
1.1.3 Performance vs Privacy 5
1.1.4 Compatibility vs Programmability 5

1.2 Interface Documentation Guidelines 5
1.3 Engineering standards(e.g., UML and IEEE) 5
1.4 Definitions, acronyms, and abbreviations 5

2. Packages 7
2.1 Mobile Packages 9

2.1.1 Mobile UI 10
2.1.2 Mobile Logic 12

2.2 Backend Packages 13
2.2.1 Models 13
2.2.2 Services 14
2.2.3 Repositories 15
2.2.4 Types 15

2.3 Device Packages 16
2.3.1 Models 16
2.3.2 Views 17
2.3.3 Controllers 18

3. Class Interfaces 19
3.1 Mobile Packages 19

3.1.1 Mobile UI 19
3.1.2 Mobile Logic 24

3.2 Backend Packages 29
3.2.1 Models 29
3.2.2 Services 35
3.2.3 Types 39
3.2.4 Repositories 39

3.3 Device Packages 45
3.3.1 Models 45
3.3.2 Views 48
3.3.3 Controllers 52

4. Glossary 56

5. References 57

2

1. Introduction
Due to the COVID-19 pandemic which we have faced in 2020, there have been major changes

in our lifestyle. Since COVID-19 is a virus that can spread very easily, it affected many people

all around the world. In addition to the easy spread of the virus, it poses a big problem due to its

high lethal effect. There are some rules that people must follow from the beginning of the

pandemic in order to protect themselves and society from the virus. Two of the most important

of these are wearing masks and keeping social distance. For this reason, states require wearing

masks and impose curfews at regular intervals. This means that although the rules are tried to

be applied, there are cases where the mask and social distance control cannot be fully

achieved. Therefore, we aimed to make a system to prevent these situations..

PANDETECT is an integrated system that will detect whether people in a particular area

obey social distance rules and whether they wear masks or not. Being an integrated system,

PANDETECT consists of two separate applications one in the form of a desktop and one in the

form of a mobile application. Our system aims to extract data about whether the rules are

followed or not in specific locations in order to present it to users in the mobile application’s map

view. All users who want to take advantage of our system can choose to stay away from areas

that could put their health at risk. Business owners, on the other hand, can use our system if

they want to have more effective control in their spaces, or if they want to provide data to their

customers as an indication of the safety levels of their places. With the help of the desktop

application, they can watch the stream of cameras, while getting instant data, which will enable

them easy and effective control. Likewise, individuals or institutions responsible for regulations

can use our system to audit the people and places more effectively.

To keep a safe environment during the pandemic, governments have the duty of

inspecting the public places and closed areas such as restaurants, to see whether they comply

with the COVID-19 regulations to the law enforcement officers but it requires a lot of

ground-work and it is known that humans are more error-prone compared to a machine. In order

to maximize the efficiency of the regulations, the PANDETECT system will continuously check

whether the regulations are being complied with, and statistics will be generated according to

the camera device’s field of view.

The main goal of the mobile application is to identify places, by extracting data, that do

not comply with the pandemic rules such as restaurants, workplaces, and public areas. In this

3

way, it is expected to increase the control in the places where do not comply with the rules. This

information will be shared on a map in the PANDETECT mobile application using the data of the

places where rules are followed and not followed. That way people can choose not to go to

areas where the rules are not followed according to the map provided. Thus, our system aims to

inform users about compliance with the rules in some specific places. Also, the provided data

can be used to increase regulations by the government. Similarly, business owners can use the

system to make sure they have control over their places. With the help of the desktop

application, it will be easier for them to control the violation situations. That way it will be easier

for them to keep a healthy environment.

It is important to note that although PANDETECT will be developed with COVID-19 in

mind, it will be a system that may be used for other pandemics in the coming years. The spread

of viruses is very similar regardless of their types. Thus, we aimed to use our system for not only

the COVID-19 pandemic but also for future pandemic conditions. Also, it is important for us to

implement real-life solutions with computer vision concepts. We believe that implementing such

real-life solutions will contribute to intellectual and scientific knowledge.

1.1 Object Design Trade-offs

1.1.1 Usability vs Accuracy

While using the face detection and distance detection algorithms in real-time, we may need to

sacrifice some of the processing power which can be called accuracy to increase the usability of

the face detection algorithms. With that, our algorithm can respond to the real time

requirements.

1.1.2 Flexibility vs Usability

We have decided to use ESP-32 CAM devices (AI thinker Model) in order to build a real-time

embedded application in order to increase flexibility of the application. To give an example, with

the new devices, we can log to new wi-fi’s with the usage of bluetooth therefore it increased the

usability, but we have sacrificed the usability, since the cameras of the ESP-32 CAM devices

are only 2 MP which decreases the usability of the system since we need to carefully determine

where we need to put the new camera devices.

4

1.1.3 Performance vs Privacy

Since we included some privacy methods for the business owners such as authentication, we

have to sacrifice some of the performance in the backend to increase the privacy of our users,

while giving some performance from SQL database.

1.1.4 Compatibility vs Programmability

Since we are working with multiple platforms (camera device, PC, mobile), we need to write

proper code in order to sustain the requirements of all of those platforms we included in our

system. Therefore, we need to increase compatibility which decreases our proper

programmability since we need to equip new technologies to further balance our compatibility

such as using TypeScript.

1.2 Interface Documentation Guidelines
In the documentation, all class names are singular and named with standard class name form

like ‘ClassName’. Furthermore variable methods names follow the same form like ‘variable’ and

‘method()’. The description of the class starts with the class name followed by the method

names and variables

1.3 Engineering standards(e.g., UML and IEEE)
We followed the IEEE citation format for referencing our resources and UML design principles

for class descriptions and diagrams.

1.4 Definitions, acronyms, and abbreviations

5

TERM Definitions acronyms and abbreviations

MVC Model view controller is a pattern that

separates the application to three other main

logical components, model ,view , controller.

The separation allows us to work better and

separately not depending on other

developers for specific parts.

6

CPU Central processing unit

ESP-32 CAM DEVICE This device is an embedded development

board devoted for camera applications

UML Unified Modeling Language

IEEE Institute of Electrical and Electronics
Engineers

Google Maps API ​An api distributed from google that allows us

to use the google maps screen in our

system’s mobile part

Postgres An sql for unix that we use.

2. Packages
In this section, firstly, the subsystem decomposition of the device system, backend system and

mobile application are given. Secondly, the packages are explained in detail.

Figure 1: Subsystem Decomposition of the Device System

7

Figure 2: Subsystem Decomposition of the Backend System

8

Figure 3: Subsystem Decomposition of the Mobile Application

2.1 Mobile Packages
The mobile application has its own programming perspective. This means that it will be

programmed in a separate manner from the system which will only use the data provided from

the backend via the database. The mobile application consists of two subsystems: the UI (user

interface) and the Logic subsystem. The UI package is for the mobile applications' front-end

side development. It will be used with the Logic subsystem. The logic package is for fetching the

data from the backend and preparing the data for the UI subsystem. For instance, the logic

subsystem will fetch rates for the mask and social distancing for every 15 minutes. For the past

data graphs, it will store the arrived data in an array. It will make the information ready to be

shown as a graph which will be shown by the UI subsystem. For mobile application JavaScript

language will be used via TypeScript. Current web technologies, which also work on mobile

9

which are built-on and for Javascript. However JavaScript lacks types; thus, we choose to use

TypeScript which is a strongly-typed language and it compiles to JavaScript which is then run

on the production environment. React Native is used as the framework for the user interface

programming of the mobile application.

2.1.1 Mobile UI

Figure 4. UI Package for Mobile Application

10

In this package, there are eight classes which are responsible for the user interface of the

mobile application. MapPage is the page that contains the map that shows the places registered

in the application as well as the report and streaming buttons. The MainPageController is the

first page that the users see when they enter the application which contains the sign in, sign up

buttons and related text fields. SignUpPage consists of the related sign up UI items. ApplyPage

is for the users who want to sign up to the application as a place owner and contains related text

fields and a submit button. ReportPage enables users to report the bugs and suggestions and it

contains text fields and a submit button. StreamPage enables place owners to watch their own

camera streams. CurrentDataPage and PastDataPage displays the current and past data UI

items of the places, respectively.

11

2.1.2 Mobile Logic

Figure 5. Logic Package for Mobile Application

In this package, there are eleven classes responsible for the logic of the mobile application.

Main class initializes the application and it contains methods to sign in, sign up and apply. Map

class does the map activities such as creating, deleting or selecting a place. Place class

corresponds to the places registered in the application and displayed in the map. Place also

contains current and past data. PlaceCurrentData and PlacePastData contain the compliance

rates to the mask usage and social distance as well as the number of people in that place.

There are two types of users in the application which are place owner and public user. The

place owner has also streaming activity in addition to the public user. Form is required to sign

12

up to the system for the place owners and Report is for the bugs and suggestions. DataProvider

gets data from the database or changes according to the new data.

2.2 Backend Packages

2.2.1 Models

Figure 6. Models Package for Backend

That is the main model system. Here it can be seen that every user that connects with devices

has one or more businesses. Each business has a device which is an interface on PC to control

and check the camera streams. Two cameras generate a camera Pair which generates a better

approximation of the depth map. With these camerapirs we can generate statistics that will be

shared with our business owner and the other users who use this system on mobile.

13

2.2.2 Services

Figure 7. Services Package for Backend

This subsystem contains the services offered by the backend system. These services are

grouped and divided into classes that are responsible for one general subject. For example,

UserService has all the functions for user related operations. Additionally, each service has a

RepositoryGroup for accessing and calling repository functions that are located in the lower

layer.

14

2.2.3 Repositories

Figure 8. Repositories Package for Backend

These are the postgres and redis repositories which help us to cache and store the data. The

Redis repositories are interfaces that help the developers cache the given data. Other kinds of

databases are interfaces for the postgres sql that we will use to store long-term data.

2.2.4 Types

Figure 9. Enums for Ease of Use

15

2.3 Device Packages

2.3.1 Models

Figure 10. Models Package for the Device

These are the subsystems denoted for models located in the device. Some of those models are

similar to the models on the backend service however, not all the models are transferred here.

There are also device specific models such as BluetoothCamera.

16

2.3.2 Views

Figure 11. Views Package for Device

View part of the system. These classes contain parts in the interface of the system. This

interface will only be in the Device, since we can see the camera stream here. The user can

achieve the pages where he/she can watch her/his cameras, make them pair and add or

remove cameras.

17

2.3.3 Controllers

Figure 12. Controllers Package for Device

This part of the system manipulates the data between model part and the view part. Every

action taken by the view part will be sent here. And for each class in the view there is a

corresponding controller for it. After that it does logical operations on the model part and sends

it back to view.

18

3. Class Interfaces

3.1 Mobile Packages

3.1.1 Mobile UI

19

Class MainPageController

 Class for the first page that will be shown when
the app started.

Properties

signInButton Button - sign in button

signUpButton Button - sign up button

applyButton Button - apply button for those who want to be
place owner

emailField Input field - email field to get input

passwordField Input field - password field to get input

Methods

signUpButtonClicked() Method - it directs the user to the SignUpPage.

signInButtonClicked() Method - it checks whether the user’s email and
password that the user entered are valid, if so, it
directs the user to the MapPage, otherwise, a
warning is displayed.

Class MapPage

 Class for the page that will contain the map, as
well as the stream, report and sign out buttons.

Properties

streamButton Button to watch the stream of the place owner's
own camera.

signOutButton Button to sign out from the application.

20

reportButton Button to report the bugs and suggestions to the
team.

map Google Map that will display the places on the
map.

Methods

streamButtonClicked() Method that will direct the users to the
StreamPage.

signOutButtonClicked() Method that will sign out the users from the
application.

reportButtonClicked() Method that will direct the users to the
ReportPage.

streamVisible() Method that will check whether the user is a place
owner or not, to make the stream button visible in
the MapPage.

placeSelected() Method that will get the place that the user has
selected from the map.

Class StreamPage

 Class for the streaming page that will be only
shown to place owners.

Properties

changeCamButton Button - button for changing the cam for streaming
view

signOutButton Button - sign out button

backButton Button - back button

counter Number - It will be a variable within the file that
counts the number of times pressed to the change
cam button. When the limit of the number of cams
is reached for that place owner it will be set to 0. It

21

will be updated within the methods as the button is
pressed.

Methods

changeCam(Number counter) It changes the streaming view when the change
cam button is clicked.

getStreaming() It shows the streaming view.

signOutButtonClicked() Signs out the user, then opens the main page.

backButtonClicked() Opens the previous page.

Class CurrentDataPage

 Class for showing the current data of the selected
place from the map.

Properties

pastDataButton Button - button for changing the cam for streaming
view

signOutButton Button - sign out button

backButton Button - back button

Methods

updateView() Updates the current data view when new data is
available.

showData() Shows the data view in an organized manner.

backButtonClicked() Opens the previous page.

signOutButtonClicked() Signs out the user, then opens the main page.

pastDataButttonClicked() It opens the page for detailed past data via
PastDataPage class.

Class PastDataPage

22

 Class to show the past data of the selected place
from the map.

Properties

hourButton Button to show the last hour’s past data.

dayButton Button to show the last day’s past data.

weekButton Button to show the last week’s past data.

monthButton Button to show the last month’s past data.

backButton Button to go back to the MapPage.

Methods

changeGraphInterval(Button id) Method that changes the interval of the graph
according to the user’s choice and adapts the
graph according to the data of the hour, day, week
or month.

updateView() Method that updates the past data view when the
new data is available.

showGraph() Method that displays the graph.

backButtonClicked() Method that will direct the user to the previous
page.

placeSelected() Method that will get the place that the user has
selected from the map.

Class ReportPage

 Class for the report page. It enables users to report
bugs or to make any comments about our system.

Properties

submitButton Button - button for submitting the report form

signOutButton Button - sign out button

backButton Button - back button

23

subjectField Input - Text field to get report subject from the user.

infoField Input - Text field to get information about user’s
report.

Methods

submitButtonClicked() It submits the report form via using the logic package.

signOutButtonClicked() Signs out the user, then opens the main page.

backButtonClicked() Opens the previous page.

Class ApplyPage

 Class that enables users to apply to the
application to become a place owner.

Properties

submitButton Button to submit the application form.

backButton Button to go back to the previous page.

emailField Input field to get the user’s email.

placeNameField Input field to get the place’s name.

locationField Input field to get the place’s location.

phoneField Input field to get the place’s phone.

notesField Input field to get the user’s notes.

Methods

submitButtonClicked() Method that submits the report.

signUpButtonClicked() Method that will direct the user to the
SignUpPage.

backButtonClicked() Method that will direct the user to the previous
page.

Class SignUpPage

3.1.2 Mobile Logic

24

 Class that enables users to sign up to the
application

Properties

signUpButton Button to sign up to the application.

backButton Button to go back to the previous page.

emailField Input field to get the user’s email.

passwordField Input field to get the user’s password.

Methods

signUpButtonClicked() Method that will direct the user to the
MainPageController to sign in.

backButtonClicked() Method that will direct the user to the previous
page.

Class Main

 Main class for the logic subsystem to perform vital
operations.

Methods

initialize() Initializes the system for the initial state.

apply() Will be called by the UI subsystem to perform
apply operation on the backend side.

signUp() It communicates with the database system so that
the signUp operation can be made. It checks
whether the user already registered to the system,
if not it adds to the database.

signIn() Performs sign in operation.

25

Class Map

 Class that uses GoogleMaps API to set the Map

information so that UI can be arranged

accordingly.

Properties

googleMap GoogleMap - Google map via API.

Methods

placeSelected() It returns the selected place’s location, from the
map.

createPlace() Creates new place objects to be later shown on
the map. Sets the new place information.

deletePlace() Deletes a place object when needed.

Class Place

 Class for place information.

Properties

name String - Name of a place

photo Number - Photo of a place, as in form of base64
encoding.

address String - Address of the place as text to be shown
for the users.

curData Object for PlaceCurrentData. UI will use this
object with its information to arrange
corresponding UI components.

pastData Object for PlacePastData. UI will use this object
with its information to arrange corresponding UI
components.

Methods

26

setPastData() Creates and sets the pastData object.

setCurrentData() Creates and sets the curData object

getPastData() It will be used by the UI subsystem to fetch past
data information for the view.

getCurrentData() It will be used by the UI subsystem to fetch
current data information for the view.

Class PlacePastData

 Class for past data information of the places.

Properties

maskRates Number[] - Array that stores mask compliance
rates for each 15 minutes interval data.

distancingRates Number[] - Array that stores social distancing
compliance rates for each 15 minutes interval
data.

noOfPeople Number[] - Array that stores the number of people
for each 15 minutes interval data.

Methods

setGraph() Sets the graph information for initial opening.

changeGraph() Arranges the graph information when the user
wants to change the interval of the graph view.

Class PlaceCurrentData

 Class for current data information for the places.

Properties

27

maskRate Number - stores mask compliance rate for the last
15 minute

distancingRate Number - stores social distancing compliance rate
for the last 15 minute

noOfPeople Number - stores number of people for the last 15
minute

Class Form

 Class that stores form information when a user
applies to become a place owner.

Properties

email String - email information

name String - name information

location String - location information

phone Number - phone number

note String - note information for users to add
additional notes.

id Number - the integer that the form is represented
with.

Class Report

 Class that represents the report that the users
send their suggestions and bugs.

Properties

subject String - that the users enter the subject of the
report.

note String - that the users enter the note of the report.

28

id Number - the integer that the report is represented
with.

Class DataProvider

 Class to achieve efficient and quick
communication with the database.

Methods

fetchPlaceDetail() It fetches place details from the database.

getPlaceDetail() This method will be called from the other classes
to get and set the place objects.

addPlace() It will create new place objects within the mobile
application system.

addReport() It adds the report information to the database.

Class User

 Class that represents the user in the application.

Properties

name String - the name of the user

surname String - the surname of the user

email String - the email address of the user

type Number - represents the type of the user. If it is 0,
the user is a public user, if it is 1, the user is a
place owner.

Methods

sendReport() Method to send the report to the team.

3.2 Backend Packages

3.2.1 Models

29

Class PlaceOwner

 Class that represents the user type place owner in
the application.

Properties

cam Number[] - represents the cameras of the place
owner

Methods

openStream() Method to watch the place owner’s own stream.

Class PublicUser

 Class that represents the user type public user in
the application.

Class User

 This class models the user.

Properties

public String fullName Name of the user.

public String email Email address of the user.

public String password Hashed password of the user.

public Boolean isActive Boolean variable denoting if a user is activated or
not.

Methods

30

Class Session

 This class models the session.

Properties

public Date expirationDate Expiration date of the token.

public Date startDate Creation date of the session.

public User user User object that the session is pointing to.

public String token JWT Token used for authentication.

Methods

Class Device

 This class models the device.

Properties

public String localIp Local IP address of the device.

public String macAddress Mac Address of the device.

public Business business Business object of the device.

public String name Name of the device.

public Camera[] cameras Cameras registered to the device as a list.

public Boolean isActive The activity status of the device.

Methods

31

Class FrameStatistic

 This class models a FrameStatistic.

Properties

public BoundingBox[] box List of bounding boxes in the frame.

public Int masked Number of masked people.

public Int unmasked Number of unmasked people.

public Int total Total number of people passed through cameras.

public Int violation Number of people violated the rules

public Date frameTime Time stamp of the frame.

Methods

Class Camera

 This class models the user.

Properties

public String macAddres Mac address of the camera.

public CameraOptions options Set options of the camera.

public CameraPair pair Representation of a camera pair of two cameras.

public String localIp Local IP address of the camera.

Methods

Class CameraPair

32

 This class models the user.

Properties

public Camera left Camera that is on the left in the pair.

public Camera right Camera that is on the right in the pair.

Methods

Class CameraOptions

 This class models the user.

Properties

public Int cameraId ID of the camera.

public Int width Width in pixels of the camera.

public Int height Height in pixels of the camera.

Methods

Class Business

 This class models the user.

Properties

public Long businessId Primary key, id of the business.

public String businessName Name of the business.

public Device[] devices List of devices registered to business

public User user User object, owner of the business.

public LocationPoint location Location of the business on the map.

33

public String address Full physical address of the business.

Methods

Class ​BusinessStatistic

 This class models the business statistics.

Properties

public Long businessId ID stating which business the statistics belongs
to.

public Int numberOfCameras Number of cameras.

public Int averageTotalCount Average count of people passing over time.

public Int averageMaskedCount Average count of people with masks over time.

public Int averageUnMaskCount Average count of people without masks over
time.

public Int averageDistanceViolation Average count of people violating the distance
rule over time.

public Int totalDistanceViolation Total count of violations of the distance rule.

public Date startingTime Start time of recording,

public Time duration Duration of the recording.

public CameraStatistics[] cameraStatistics List of statistics in case of multiple cameras.

Methods

Class CameraStatistics

 This class models the user.

34

Properties

public Int averageTotalCount Average count of people passing over time.

public Int averageMaskedCount Average count of people with masks over time.

public Int averageUnMaskCount Average count of people without masks over
time.

public Int averageDistanceViolation Average count of people violating the distance
rule over time.

public Int totalDistanceViolation Total count of violations of the distance rule.

public Date startingTime Start time of the recording.

public Time duration Duration of the recording.

public FrameStatistic[] frameStatistics List of frame statistics that composes camera
statistics.

Class LocationPoint

 This class models the Location Point.

Properties

public GeoJson location Custom JSON object for location.

Methods

Class ​ActivationToken

 This class models the activation token.

Properties

public String token Token itself.

public ActivationTokenType type Type of the token.

public Date expirationDate Expiration date of token.

3.2.2 Services

35

public Date startDate Start date of the token.

Methods

Class UserService

 This class contains the core logic of user
operations.

Properties

private RepositoryGroup repositories All repositories are accessed from this object.

Methods

public Session refreshSession(Session
session)

Extends the user’s session.

public Session loginUser(String email, String
password)

Creates a session for the user.

public Boolean signoutUser(Session session) Destroys the session for the user.

public User signupUser(String email. String
password)

Registers the user but does not activate it.
Also, creates an activation token for later
activation.

public User activateUser(ActivationToken
token)

Activates the user’s account.

public Boolean isUserActive(Session session) Checks if the user is activated.

Class DeviceService

 This class contains the core logic of device
operations.

Properties

36

private RepositoryGroup repositories All repositories are accessed from this object.

Methods

public Device registerDevice(Session
session, String macAddress, Int businessId,
String localIp)

Registers a device to the system.

public Boolean unRegisterDevice(Session
session, String macAddress, Int businessId)

Deletes a device from the system.

public Device isRegistered(Session session,
String macAddress)

Checks if a device is registered to the
system.

public Device getDevice(Session session,
String macAddress)

Gets the device using its mac address.

public Boolean containsCamera(Session
session, String cameraMacAddress, String
deviceMacAddress)

Checks if a device has a camera by the given
mac address.

public String changeLocalIp(Session session,
String macAddress, String localIp)

Changes a device’s local ip address

public String getLocalIp(Session session,
String macAddress)

Gets a device’s local ip address.

Class CameraService

 This class contains the core logic of camera
operations.

Properties

private RepositoryGroup repositories All repositories are accessed from this object.

Methods

public Camera addCamera(Session session,
String deviceMacAddress, String
cameraMacAddres, String ip)

Registers a camera.

public Boolean removeCamera(Session
session, String cameraMacAddress)

Deletes a camera from the system.

37

public Camera changeCameraIp(Session
session, String ip)

Changes the local ip address of a camera.

public Camera[] getCameras(Session
session)

Get cameras of the user.

public Camera[]
getCamerasByDeviceMacAddress(Session
session, String deviceMacAddress)

Gets cameras registered to a device.

public Camera getCamera(Session session,
String camMacAddress)

Gets the camera registered to a device.

public Boolean setCameraOptions(Session
session, String cameraMacAddress,
CameraOptions options)

Alters the camera options.

public Boolean getCameraOptions(Session
session, String cameraMacAddress,
CameraOptions options)

Gets the camera options.

public CameraPair pairCamera(Session
session, String rightMacAddress, String
leftMacAddress)

Pairs two cameras. If cameras are already
paired it returns null.

public Boolean unPairCamera(Session
session, String rightMacAddress, String
leftMacAddress)

Unpairs two cameras. If cameras are already
paired it returns false.

public CameraPair isCameraPaired(Session
session, String rightMacAddress, String
leftMacAddress)

Checks if given cameras are paired.

Class StatisticsService

 This class contains the core logic of statistics
operations.

Properties

private RepositoryGroup repositories All repositories are accessed from this object.

Methods

38

public Boolean pushFrameStatistic(Session
session, FrameStatistic frameStatistics,
String deviceMAcAddress, String
cameraMacAddress)

Pushes camera statistics to the system.

public FrameStatistic[]
peekFrameStatistic(Session session, Date
start, Time duration, String
cameraMacAddress, String
cameraMacAddress)

Returns but do not delete the frame statistics.

public FrameStatistic[]
popFrameStatistic(Session session, Date
start, Time duration, String
deviceMacAddress, String
cameraMacAddress)

Returns and deletes the frame statistics.

public BusinessStatistic[]
getBusinesseStatistics(LocationPoint point)

Calculates the business statistics from the
given point.

public BusinessStatistic[]
getStatisticsByBusinessId(Int businessId)

Calculates the business statistics from the
given business id.

Class BusinessService

 This class contains the core logic of business
operations.

Properties

private RepositoryGroup repositories All repositories are accessed from this object.

Methods

public Business createBusiness(Session
session, String name, LocationPoint
location,String address)

Creates an unactivated business.

public Boolean deleteBusiness(Session
session, Long businessId)

Deletes a business.

public Boolean
activateBusiness(ActivationToken token)

Activates a business.

3.2.3 Types

39

public Boolean isBusinessActive(Session
session, Long businessId)

Checks if a business is active.

Class BoundingBox

 This class is a utility class that models a
bounding box. The table of this entity won't
be created.

Properties

public Int width Width of the bounding box in the pixel unit.

public Int height Height of the bounding box in the pixel unit.

public Int posX X position of the bounding box in the pixel
unit.

public Int posY Y position of the bounding box in the pixel
unit.

Methods

Enum ActivationTokenType

 This class is a utility class.

Properties

public BUSINESS ​Indicated business token.

public ACCOUNT ​Indicated account token.

Methods

3.2.4 Repositories

40

Class UserRepositoryDB

 This class is responsible for communicating
with the database.

Properties

public RedisClient client The dependency supplied from the libraries to
allow easy access to redis.

public DBClient client The dependency supplied from the libraries to
allow easy access to the database.

public HttpClient client The dependency supplied from the libraries to
allow easy web communication.

Methods

public Boolean add(User user) Creates an unactivated user.

public Boolean remove(Long userId) Removes the user.

public User find(Long userId) Finds and fetches the user.

public Boolean activate(Long userId) Activates a user.

public Boolean isActivated(Long userId) Checks if a user is activated.

Class SessionRepositoryRedis

 This class is responsible for communicating
with the Redis.

Properties

public RedisClient client The dependency supplied from the libraries to
allow easy access to redis.

public DBClient client The dependency supplied from the libraries to
allow easy access to the database.

public HttpClient client The dependency supplied from the libraries to
allow easy web communication.

41

Methods

public Session add(String token) Creates a new session and inserts it into the
Redis.

public Boolean remove(String token) Removes a session from the Redis.

public Boolean exists(Sting token) Check if the session exists.

public Session get(String token) Get the Session from Redis.

Class DeviceRepositoryDB

 This class is responsible for communicating
with the database.

Properties

public RedisClient client The dependency supplied from the libraries to
allow easy access to redis.

public DBClient client The dependency supplied from the libraries to
allow easy access to the database.

public HttpClient client The dependency supplied from the libraries to
allow easy web communication.

Methods

public Device add(String deviceMacAddress) Register a device to the database.

public Boolean remove(String
deviceMacAddress)

Remove a device from the database.

public Boolean setIp(String
deviceMacAddress, String localIp)

Change the ip address of the device.

public String getIp(String deviceMacAddress) Get the ip address of the device.

public Boolean remove(String
deviceMacAddress)

Remove the device.

public Camera[] getCameras(String
deviceMacAddress)

Get the assigned cameras of a device.

42

public Boolean addCamera(String
deviceMacAddress, Camera camera)

Add a camera to the device.

public Boolean removeCamera(String
deviceMacAddress, String
cameraMacAddress)

Remove the camera from the device.

Class CameraRepositoryDB

 This class is responsible for communicating
with the database.

Properties

public RedisClient client The dependency supplied from the libraries to
allow easy access to redis.

public DBClient client The dependency supplied from the libraries to
allow easy access to the database.

public HttpClient client The dependency supplied from the libraries to
allow easy web communication.

Methods

public Boolean isPaired(String
leftMacAddress, String rightMacAddress)

Checks if a camera is paired.

public CameraPair pair(String
leftMacAddress, String rightMacAddress)

Pairs given two cameras.

public CameraOptions getOptions(String
cameraMacAddress)

Gets the options of a camera.

public Boolean setOptions(String
cameraMacAddress, CameraOptions options)

Sets the options of a camera.

Class StatisticsRepositoryRedis

 This class is responsible for communicating
with the Redis.

43

Properties

public RedisClient client The dependency supplied from the libraries to
allow easy access to redis.

public DBClient client The dependency supplied from the libraries to
allow easy access to the database.

public HttpClient client The dependency supplied from the libraries to
allow easy web communication.

Methods

public Boolean
pushFrameStatistic(FrameStatistic
frameStatistic, String cameraMacAddress)

Pushes a camera statistic to the redis.

public FrameStatistic[]
peekFrameStatistics(Date start, Time
duration, String deviceMacAddress, String
cameraMacAddress)

Gets but does not delete the FrameStatistics.

public FrameStatistic[]
popFrameStatistics(Date start, Time duration,
String deviceMacAddress, String
cameraMacAddress)

Gets and deletes the FrameStatistic from the
redis.

public BusinessStatistic[]
getBusinesseStatistics(LocationPoint point)

Gets the business statistics from the
database by location.

public BusinessStatistic
getStatisticsByBusinessId(Int businessId)

Gets the business statistics from the
database by business id.

public Boolean pushBusinessStatistic(Long
businessId, BusinessStatistic statistics)

Pushes a business statistics to the redis.

Class StatisticsRepositoryDB

 This class is responsible for communicating
with the database.

Properties

public RedisClient client The dependency supplied from the libraries to
allow easy access to redis.

44

public DBClient client The dependency supplied from the libraries to
allow easy access to the database.

public HttpClient client The dependency supplied from the libraries to
allow easy web communication.

Methods

public BusinessStatistic[]
getBusinesseStatistics(LocationPoint point)

Gets the business statistics from the
database by location.

public BusinessStatistic
getStatisticsByBusinessId(Int businessId)

Gets the business statistics from the
database by business id.

public Boolean pushBusinessStatistic(Long
businessId, BusinessStatistic statistics)

Pushes a business statistics to the database.

Class BusinessRepositoryDB

 This class is responsible for communicating
with the database.

Properties

public RedisClient client The dependency supplied from the libraries to
allow easy access to redis.

public DBClient client The dependency supplied from the libraries to
allow easy access to the database.

public HttpClient client The dependency supplied from the libraries to
allow easy web communication.

Methods

public Business createBusiness(Long userId,
String name, LocationPoint location,String
address)

Adds a business to the database.

public Boolean deleteBusiness(User user,
Long businessId)

Deletes a business from the system.

public Boolean
activateBusiness(ActivationToken token)

Activates a business.

3.3 Device Packages

3.3.1 Models

45

public Boolean isBusinessActive(Long
businessId)

Checks if business is active.

Class CameraStatistics

 This class models the user.

Properties

public Int averageTotalCount Return the average total count of the
individuals in the frames

public Int averageMaskedCount Return the average masked total count of the
individuals in the frames

public Int averageUnMaskCount Return the average unmasked total count of
the individuals in the frames

public Int averageDistanceViolation Return the average individuals who violates
the social distance

public Int totalDistanceViolation Return the total individuals who violates the
social distance

public Date startingTime Return the starting time Date

public Time duration Time span of the statistics.

public FrameStatistic[] frameStatistics List of FrameStatistics.

Methods

Class StatisticalAnalyzerModel

 This class models statistical analyzer.

Properties

46

public PyTorchModel monocularModel Pytorch convolutional neural network model.

Methods

public FrameStatistics compute(Image frame) Computes the FrameStatistics from a
monocular image.

Class StereoDepthCalculationModel

 This class models the stereo depth
calculation.

Properties

public PyTorchModel stereoModel Pytorch convolutional neural network model.

Methods

public FrameStatistics compute(Image left,
Image right)

Computes the FrameStatistics from two
images.

Class BluetoothCamera

 This class models the user.

Properties

public String macAddress Mac address of the camera.

public Float connectionStrength Connection strength of the camera to the
device.

Methods

Class Business

 This class models the user.

Properties

47

public Long businessId Id of the business.

public String businessName Name of the business.

public Device[] devices List of devices of the

public User user Owner user of the business.

public LocationPoint location Location of the business.

public String address Address of the business.

Methods

Class FrameStatistics

 This class models the user.

Properties

public BoundingBox[] box List of bounding boxes in the frame.

public Int masked Number of masked people inside the frame.

public Int unmasked Number of unmasked people inside the
frame.

public Int total Number of people inside the frame.

public Int violation Number of violations in the frame.

public Date frameTime The moment the frame has shot.

Methods

Class BoundingBox

 This class models the bounding box drawn
around detected people.

Properties

48

public Int width Width of the bounding box in the pixel unit.

public Int height Height of the bounding box in the pixel unit.

public Int posX X position of the bounding box in the pixel
unit.

public Int posY Y position of the bounding box in the pixel
unit.

Methods

Class CameraStatistics

 This class models statistics obtained from the
camera feed.

Properties

public Int averageTotalCount Average number of people present inside the
frame in the time span.

public Int averageMaskedCount Average number of masked people inside the
time span.

public Int averageUnMaskCount Average number of unmasked people inside
the time span.

public Int averageDistanceViolation Average number of distance violations inside
the time span.

public Int totalDistanceViolation Total number of distance violations inside the
time span.

public Date startingTime Starting time of the statistics.

public Time duration Time span of the statistics.

public FrameStatistic[] frameStatistics List of FrameStatistic objects

Methods

3.3.2 Views

49

Class ​LoginPage

 This is the view for the login page.

Properties

Methods

public void displayError(Error error) This method displays an error incase of an
unsuccessful login.

Class SignupPage

 This is the signup page view for users.

Properties

Methods

public void displayError(Error error)

This method displays an error incase of an
unsuccessful signup.

Class BusinessCreationPage

 This class acts as the view for the business
creation process.

Properties

Methods

public void displayError(Error error) This method displays an error incase of an
unsuccessful business addition to the system.

50

Class BusinessSelectionPage

 This is the view where the businesses are
selected.

Properties

Methods

public void showBusiness(BusinessModel[]
businesses)

This method takes BusinessModel as an
input and displays it to the view.

public void displayError(Error error) This method displays an error incase of an
unsuccessful business addition to the system.

Class MainPage

 This is the view for the main page.

Properties

Methods

public void showCameras(BluetoothCamera[]
cameras)

Returns a list of available cameras.

public void showFrames(Image image) Shows the image on the view​.

public void showStatistics(CameraStatistics
cameraStatistics)

Shows the statistics obtained from camera
statistics on the view.

Class AddCameraPage

 This is the view for adding cameras.

Properties

51

Methods

public void showCameras(BluetoothCamera[]
cameras)

This method shows the available cameras on
the view.

public void showUserInfo(User user) This method shows information about the
user on the view.

Class CameraPage

 This is the view for the camera page.

Properties

Methods

public void showFrame(Image image) This method displays a single frame on the
view.

public void public void
showStatistics(CameraStatistics
cameraStatistics)

This method shows the statistics obtained by
camera(s).

public void public void
showRealTimeStatistics(FrameStatistic
frameStatistics)

This method displays real time statistics on
the view.

Class PairedCameraPage

 This is the view for the main page.

Properties

Methods

public void showLeftFrame(Image image)

This method displays the frame coming from
the left camera of the pair.

public void showRightFrame(Image image) This method displays the frame coming from
the right camera of the pair.

3.3.3 Controllers

52

public void showDepthFrame(Image image) This method displays the depth obtained by
the pair of two cameras.

public void public void
showStatistics(CameraStatistics
cameraStatistics)

This method shows statistics obtained by the
pair of cameras.

public void public void
showRealTimeStatistics(FrameStatistic
frameStatistics)

This method shows statistics of a frame
obtained by the pair of cameras.

Class ​LoginPageController

 This is the controller for the user login page.

Properties

Methods

public void onLoginButtonClicked(InputForm
form)

This method takes InputForm as an input and
validates the login of a user.

public void onSignupButtonClicked(InputForm
form)

This method takes an InputForm as an input
and validates the signup of a user.

Class SignupPageController

 This is the controller for the user signup page.

Properties

Methods

public void onLoginButtonClicked(InputForm
form)

This method takes InputForm as an input and
validates the login of a user.

public void onSignupButtonClicked(InputForm
form)

This method takes an InputForm as an input
and validates the signup of a user.

53

Class BusinessCreationPageController

 This is the view for the registration of a
business.

Properties

Methods

public void
onCreateBusinessButtonClicked(InputForm
form)

This method takes InputForm as an input and
validates the business creation process.

public void
onSelectBusinessButtonClicked(InputForm
form)

This method takes InputForm as input from
the click and displays the selected business.

Class MainPageController

 This is the view for the main page.

Properties

Methods

public void onCameraViewClicked(Long id) This method shows the view of the clicked
camera by using its ID obtained from click.

public void onAddCameraButtonClicked() This method handles adding the camera
action.

public void onRemoveCameraButtonClicked() This method removes a camera.

public void onLogoutButtonClicked() This method logs out the user.

public void
onChangeBusinessButtonClicked()

This method changes the business in view
when clicked.

54

Class AddCameraPageController

 This is the controller for adding cameras.

Properties

Methods

public void
onSearchBluetoothButtonClicked()

This method searches for available bluetooth
cameras.

public void
onConnectToCameraButtonClicked(Long id)

This method connects to the selected
camera.

public void
onCreateCameraClicked(InputForm form)

This method takes InputForm as input and
creates a camera.

public void onBackToMenuButtonClicked() This method takes the user back to the Main
Menu.

Class CameraPageController

 This is the controller responsible for the
camera page.

Properties

Methods

public void
onChangeSettingsButtonClicked(InputForm
form)

This method handles changing the settings of
the camera.

public void onBackToMenuButtonClicked() This method takes the user back to the main
menu.

55

Class PairedCameraPageController

 This is the controller responsible for the
paired camera page.

Properties

Methods

public void
onChangeSettingsButtonClicked(InputForm
form)

This method handles changing the settings of
the paired camera.

public void onBackToMenuButtonClicked() This method takes the user back to the main
menu.

4. Glossary
React Native​: ​It is an ​open-source mobile application framework in order to write code for

Android, iOS and Windows which is developed by Facebook [1].

OpenCV​: (​Open Source Computer Vision Library) is an open source computer vision and

machine learning software library [2].

Redis​: (Remote Dictionary Server) is a ​data structure server in order to hold the data in the

RAM. Redis is also an open-source NoSQL based database system​ [3].

TypeScript​: ​TypeScript is an open-source project backed by the tech giant Microsoft. Its basic

premise is JavaScript with types. TypeScript compiles directly to JavaScript [4].

ESP-32 Cam​: ​The ESP32 is a low-cost system-on-chip (SoC) series that can be used in the

development of IoT projects and embedded systems. It has Wi-Fi and Bluetooth capabilities that

can provide many functionalities [5].

56

https://en.wikipedia.org/wiki/Open-source_software

5. References
[1] “Learning React Native,” ​O'Reilly Online Learning​. [Online]. Available:

https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch01.html. [Accessed:

08-Feb-2021].

[2] “About,” ​OpenCV​, 04-Nov-2020. [Online]. Available: https://opencv.org/about/. [Accessed:

08-Feb-2021].

[3] ​Redis​. [Online]. Available: https://redis.io/. [Accessed: 08-Feb-2021].

[4] “Typed JavaScript at Any Scale.,” ​TypeScript​. [Online]. Available:

https://www.typescriptlang.org/. [Accessed: 08-Feb-2021].

[5] M. Schwartz, “Getting Started with the ESP32,” ​Home​, 17-Nov-2020. [Online]. Available:

https://makecademy.com/getting-started-esp32. [Accessed: 08-Feb-2021].

57

